This work is licensed under a <u>Creative Commons Attribution-NonCommercial-ShareAlike License</u>. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this site.



Copyright 2006, The Johns Hopkins University and Elizabeth Garrett-Mayer. All rights reserved. Use of these materials permitted only in accordance with license rights granted. Materials provided "AS IS"; no representations or warranties provided. User assumes all responsibility for use, and all liability related thereto, and must independently review all materials for accuracy and efficacy. May contain materials owned by others. User is responsible for obtaining permissions for use from third parties as needed.

Statistics in Psychosocial Research Lecture 8 Factor Analysis I

Lecturer: Elizabeth Garrett-Mayer

# Motivating Example: Frailty

- We have a concept of what "frailty" is, but we can't measure it directly.
- We <u>think</u> it combines strength, weight, speed, agility, balance, and perhaps other "factors"
- We would like to be able to describe the components of frailty with a summary of strength, weight, etc.

# **Factor Analysis**

- Data reduction tool
- Removes redundancy or duplication from a set of correlated variables
- Represents correlated variables with a smaller set of "derived" variables.
- Factors are formed that are relatively independent of one another.
- Two types of "variables":
  - latent variables: factors
  - observed variables

# **Frailty Variables**

- Speed of fast walk (+) Speed of usual walk (+) Time to do chair stands (-) Arm circumference (+) Body mass index (+) Tricep skinfold thickness (+) Shoulder rotation (+)
- Upper extremity strength (+) Pinch strength (+) Grip strength (+) Knee extension (+) Hip extension (+) Time to do Pegboard test (-)

# Other examples

- Diet
- Air pollution
- Personality
- Customer satisfaction
- Depression

# **Applications of Factor Analysis**

- 1. Identification of Underlying Factors:
  - clusters variables into homogeneous sets
  - creates new variables (i.e. factors)
  - allows us to gain insight to categories
- 2. <u>Screening of Variables</u>:
  - identifies groupings to allow us to select one variable to represent many
  - useful in regression (recall collinearity)

# Applications of Factor Analysis

- 3. <u>Summary</u>:
  - Allows us to describe many variables using a few factors
- 4. Sampling of variables:
  - helps select small group of variables of representative variables from larger set
- 5. <u>Clustering of objects</u>:
  - Helps us to put objects (people) into categories depending on their factor scores

"Perhaps the most widely used (and misused) multivariate [technique] is factor analysis. Few statisticians are neutral about this technique. Proponents feel that factor analysis is the greatest invention since the double bed, while its detractors feel it is a useless procedure that can be used to support nearly any desired interpretation of the data. The truth, as is usually the case, lies somewhere in between. Used properly, factor analysis can yield much useful information; when applied blindly, without regard for its limitations, it is about as useful and informative as Tarot cards. In particular, factor analysis can be used to explore the data for patterns, confirm our hypotheses, or reduce the Many variables to a more manageable number.

-- Norman Streiner, PDQ Statistics

# **Orthogonal One Factor Model**

Classical Test Theory Idea:

(unequal "sensitivity" to change in factor) (Related to Item Response Theory (IRT))

# Key Concepts

- F is latent (i.e.unobserved, underlying) variable
- X's are observed (i.e. manifest) variables
- $e_j$  is measurement error for  $X_j$ .
- $\lambda_j$  is the "loading" for  $X_j$ .

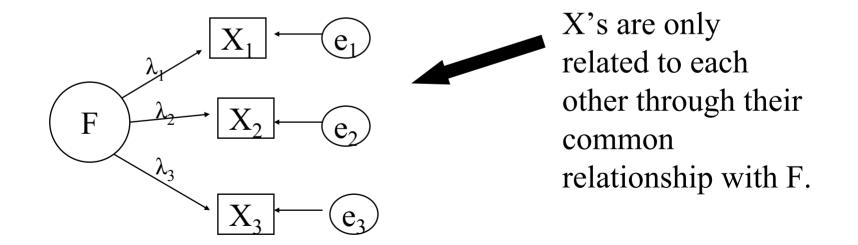
#### Assumptions of Factor Analysis Model

- Measurement error has constant variance and is, on average, 0.  $Var(e_j) = \sigma_j^2 \qquad E(e_j) = 0$
- No association between the factor and measurement error Cov(F,e<sub>i</sub>) = 0
- No association between errors: Cov(e<sub>i</sub>, e<sub>k</sub>) = 0
- Local (i.e. conditional independence): Given the factor, observed variables are independent of one another.
  Cov(X<sub>i</sub>,X<sub>k</sub> | F) = 0

# Brief Aside in Path Analysis

Local (i.e. conditional independence): Given the factor, observed variables are independent of one another.

 $Cov(X_j,X_k | F) = 0$ 



# **Optional Assumptions**

- We will make these to simplify our discussions
- F is "standardized" (think "standard normal")
  Var(F) = 1 E(F) = 0
- X's are standardized:
  - In practice, this means that we will deal with "correlations" versus "covariance"
  - This "automatically" happens when we use correlation in factor analysis, so it is not an extra step.

#### Some math associated with the **ONE FACTOR** model

- $\lambda_j^2$  is also called the "communality" of  $X_j$  in the one factor case (notation:  $h_j^2$ )
- For standardized  $X_j$ , Corr(F,  $X_j$ ) =  $\lambda_j$
- The percentage variability in (standardized)  $X_j$  explained by F is  $\lambda_j{}^2$ . (like an  $R^2$ )
- If  $X_i$  is N(0,1), then  $\lambda_i$  is equivalent to:
  - the slope in a regression of  $X_i$  on F
  - the correlation between F and X<sub>i</sub>
- Interpretation of  $\lambda_i$ :
  - standardized regression coefficient (regression)
  - path coefficient (path analysis)
  - factor loading (factor analysis)

# Some more math associated with the ONE factor model

- Corr(X<sub>j</sub>, X<sub>k</sub>) =  $\lambda_j \lambda_k$
- Note that the correlation between  $X_j$  and  $X_k$  is <u>completely</u> determined by the common factor. Recall Cov( $e_j, e_k$ )=0
- Factor loadings  $(\lambda_j)$  are equivalent to correlation between factors and variables when only a <u>SINGLE</u> common factor is involved.

# Steps in Exploratory Factor Analysis

- (1) Collect and explore data: choose relevant variables.
- (2) Extract initial factors (via principal components)
- (3) Choose number of factors to retain
- (4) Choose estimation method, estimate model
- (5) Rotate and interpret
- (6) (a) Decide if changes need to be made (e.g. drop item(s), include item(s))

(b) repeat (4)-(5)

(7) Construct scales and use in further analysis

# **Data Exploration**

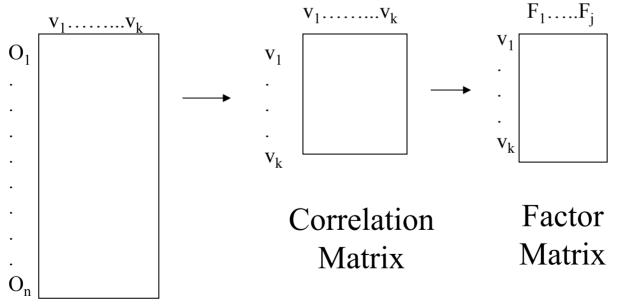
- Histograms
  - normality
  - discreteness
  - outliers
- Covariance and correlations between variables
  very high or low correlations?
- Same scale
- high = good, low = bad?

#### Aside: Correlation vs. Covariance

- >90% of Factor Analyses use correlation matrix
- <10% use covariance matrix</li>
- We will focus on correlation matrix because
  - It is less confusing than switching between the two
  - It is much more commonly used and more commonly applicable
- Covariance does have its place (we'll address that next time).

# Data Matrix

- Factor analysis is **totally dependent** on correlations between variables.
- Factor analysis summarizes correlation structure



Data Matrix

*Implications for assumptions about X's?* 

### Frailty Example (N=571)

|          | arm   | ski   | fastw | grip  | pincr | upex  | knee  | hipext | shldr | peg   | bmi   | usalk |
|----------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|
|          | +     |       |       |       |       |       |       | · · ·  |       |       |       |       |
| skinfld  | 0.71  |       |       | I     |       |       |       | I      |       |       | I     |       |
| fastwalk | -0.01 | 0.13  |       |       |       |       |       |        |       |       |       |       |
| gripstr  | 0.34  | 0.26  | 0.18  |       |       |       |       |        |       |       |       |       |
| pinchstr | 0.34  | 0.33  | 0.16  | 0.62  |       |       |       |        |       |       |       |       |
| upextstr | 0.12  | 0.14  | 0.26  | 0.31  | 0.25  |       |       |        |       |       |       |       |
| kneeext  | 0.16  | 0.31  | 0.35  | 0.28  | 0.28  | 0.21  |       |        |       |       |       |       |
| hipext   | 0.11  | 0.28  | 0.18  | 0.24  | 0.24  | 0.15  | 0.56  |        |       |       |       |       |
| shldrrot | 0.03  | 0.11  | 0.25  | 0.18  | 0.19  | 0.36  | 0.30  | 0.17   |       |       |       |       |
| pegbrd   | -0.10 | -0.17 | -0.34 | -0.26 | -0.13 | -0.21 | -0.15 | -0.11  | -0.15 |       |       |       |
| bmi      | 0.88  | 0.64  | -0.09 | 0.25  | 0.28  | 0.08  | 0.13  | 0.13   | 0.01  | -0.04 |       |       |
| uslwalk  | -0.03 | 0.09  | 0.89  | 0.16  | 0.13  | 0.27  | 0.30  | 0.14   | 0.22  | -0.31 | -0.10 |       |
| chrstand | 0.01  | -0.09 | -0.43 | -0.12 | -0.12 | -0.22 | -0.27 | -0.15  | -0.09 | 0.25  | 0.03  | -0.42 |

### **One Factor Model**

$$X_{1} = \lambda_{1}F + e_{1}$$
$$X_{2} = \lambda_{2}F + e_{2}$$
$$\vdots$$
$$X_{m} = \lambda_{m}F + e_{m}$$

# **One Factor Frailty Solution**

| Variable                                                       | Loadings                                     |  |  |  |
|----------------------------------------------------------------|----------------------------------------------|--|--|--|
| arm_circ  <br>skinfld  <br>fastwalk  <br>gripstr  <br>pinchstr | 0.28<br>0.32<br>0.30<br>0.32<br>0.32<br>0.31 |  |  |  |
| upextstr  <br>kneeext                                          | 0.26<br>0.33                                 |  |  |  |
| hipext                                                         | 0.26                                         |  |  |  |
| shldrrot  <br>pegbrd                                           | 0.21<br>-0.23                                |  |  |  |
| bmi<br>  uslwalk<br>  chrstand                                 | 0.24<br>0.28<br>-0.22                        |  |  |  |
|                                                                |                                              |  |  |  |

These numbers represent the <u>correlations</u> between the common factor, F, and the input variables.

Clearly, estimating **F** is **part** of the process

#### More than One Factor

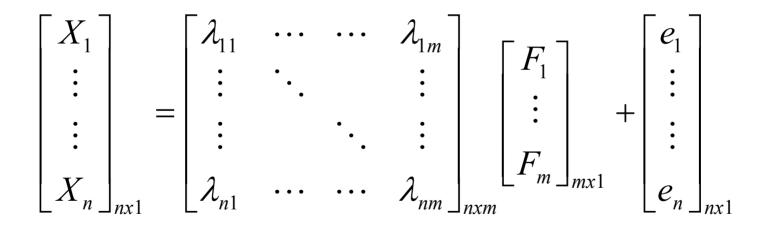
- m factor <u>orthogonal</u> model
- ORTHOGONAL = INDEPENDENT
- Example: frailty has domains, including strength, flexibility, speed.
- m factors, n observed variables

$$\begin{split} X_{1} &= \lambda_{11}F_{1} + \lambda_{12}F_{2} + \ldots + \lambda_{1m}F_{m} + e_{1} \\ X_{2} &= \lambda_{21}F_{1} + \lambda_{22}F_{2} + \ldots + \lambda_{2m}F_{m} + e_{2} \\ \vdots \\ X_{n} &= \lambda_{n1}F_{1} + \lambda_{n2}F_{2} + \ldots + \lambda_{nm}F_{m} + e_{n} \end{split}$$

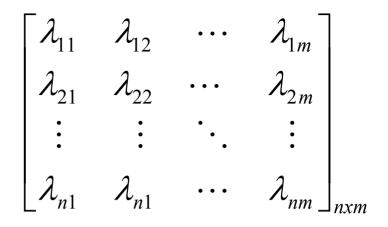
# More than One Factor

- Matrix notation:  $X_{nx1} = \Lambda_{nxm}F_{mx1} + e_{nx1}$
- Same general assumptions as one factor model.
  - $\operatorname{corr}(F_s, x_j) = \lambda_{js}$
- Plus:
  - corr( $F_s$ , $F_r$ ) = 0 for all s  $\neq$  r (i.e. orthogonal)
  - this is **forced** independence
  - simplifies covariance structure
  - $\operatorname{corr}(\mathbf{x}_{i},\mathbf{x}_{j}) = \lambda_{i1} \lambda_{j1} + \lambda_{i2} \lambda_{j2} + \lambda_{i3} \lambda_{j3} + \dots$
- To see details of <u>dependent</u> factors, see Kim and Mueller.

#### Matrix notation: $X_{nx1} = \Lambda_{nxm}F_{mx1} + e_{nx1}$



# **Factor Matrix**



- Columns represent derived factors
- Rows represent input variables
- Loadings represent degree to which each of the variables "correlates" with each of the factors
- Loadings range from -1 to 1
- Inspection of factor loadings reveals extent to which each of the variables contributes to the meaning of each of the factors.
- High loadings provide meaning and interpretation of factors (~ regression coefficients)

# Frailty Example

#### Factors

| Variable | size  | speed | Hand<br>strength | Leg<br>strength | Uniqueness |
|----------|-------|-------|------------------|-----------------|------------|
| arm_circ | 0.97  | -0.01 | 0.16             | 0.01            | 0.02       |
| skinfld  | 0.71  | 0.10  | 0.09             | 0.26            | 0.40       |
| fastwalk | -0.01 | 0.94  | 0.08             | 0.12            | 0.08       |
| gripstr  | 0.19  | 0.10  | 0.93             | 0.10            | 0.07       |
| pinchstr | 0.26  | 0.09  | 0.57             | 0.19            | 0.54       |
| upextstr | 0.08  | 0.25  | 0.27             | 0.14            | 0.82       |
| kneeext  | 0.13  | 0.26  | 0.16             | 0.72            | 0.35       |
| hipext   | 0.09  | 0.09  | 0.14             | 0.68            | 0.48       |
| shldrrot | 0.01  | 0.22  | 0.14             | 0.26            | 0.85       |
| pegbrd   | -0.07 | -0.33 | -0.22            | -0.06           | 0.83       |
| bmi      | 0.89  | -0.09 | 0.09             | 0.04            | 0.18       |
| uslwalk  | -0.03 | 0.92  | 0.07             | 0.07            | 0.12       |
| chrstand | 0.02  | -0.43 | -0.07            | -0.18           | 0.77       |

# Communalities

 The communality of X<sub>j</sub> is the proportion of the variance of X<sub>j</sub> explained by the *m* common factors:

$$Comm(X_j) = \sum_{i=1}^m \lambda_{ij}^2$$

• Recall one factor model: What was the interpretation of  $\lambda_i^2$ ?

$$Comm(X_j) = \lambda_j^2$$

- In other words, it can be thought of as the sum of squared multiplecorrelation coefficients between the X<sub>i</sub> and the factors.
- $Uniqueness(X_j) = 1 Comm(X_j)$

# Communality of X<sub>j</sub>

- "Common" part of variance
  - covariance between  $\boldsymbol{X}_{j}$  and the part of  $\boldsymbol{X}_{j}$  due to the underlying factors
  - For standardized X<sub>i</sub>:
    - 1 = communality + uniqueness
    - uniqueness = 1 communality
  - Can think of uniqueness =  $var(e_i)$
- $\rightarrow$  If X<sub>i</sub> is informative, communality is high
- → If  $X'_i$  is <u>not</u> informative, uniqueness is high
- <u>Intuitively</u>: variables with high communality share more in common with the rest of the variables.

# Communalities

- Unstandardized X's:
  - Var(X) = Var(F) + Var(e)
  - Var(X) = Communality + Uniqueness
  - Communality  $\approx$  Var(F)
  - Uniqueness  $\approx$  Var(e)
- How can Var(X)=Var(F)= 1 when using standardized variables? That implies that Var(e)=0.
  - After Var(F) is derived, then F is 'standardized' to have variance of 1. Two step procedure.
  - Actual variances are "irrelevant" when using correlations and/or standardized X's.

# How many factors?

- <u>Intuitively</u>: The number of uncorrelated constructs that are jointly measured by the X's.
- Only useful if number of factors is less than number of X's (recall "data reduction").
- <u>Identifiability</u>: Is there enough information in the data to estimate all of the parameters in the factor analysis? May be constrained to a certain number of factors.

# **Choosing Number of Factors**

Use "principal components" to help decide

- type of factor analysis
- number of factors is equivalent to number of variables
- each factor is a weighted combination of the input variables:

$$\mathbf{F}_1 = \mathbf{a}_{11}\mathbf{X}_1 + \mathbf{a}_{12}\mathbf{X}_2 + \dots$$

- Recall: For a factor analysis, generally,

$$X_1 = a_{11}F_1 + a_{12}F_2 + \dots$$

# **Estimating Principal Components**

- The first PC is the linear combination with maximum variance
- That is, it finds vector a<sub>1</sub> to maximize Var(F<sub>1</sub>) = Var(a<sub>1</sub><sup>T</sup>X)= a<sub>1</sub><sup>T</sup>Cov(X)a<sub>1</sub>
- (Can use correlation instead, equation is more complicated looking)
- Constrained such that  $\Sigma a_1^2 = 1$
- First PC: linear combination  $a_1X$  that maximizes  $Var(a_1^TX)$  such that  $\Sigma a_1^2 = 1$
- <u>Second PC</u>: linear combination  $a_2X$  that maximizes  $Var(a_2^TX)$  such that  $\Sigma a_2^2 = 1$  AND  $Corr(a_1^TX, a_2^TX)=0$ .
- And so on.....

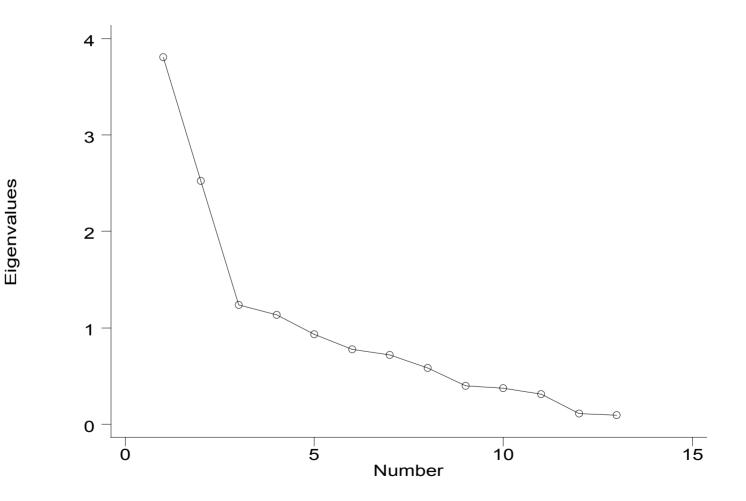
# Eigenvalues

- To select how many factors to use, consider eigenvalues from a principal components analysis
- Two interpretations:
  - eigenvalue  $\cong$  equivalent number of variables which the factor represents
  - eigenvalue  $\cong$  amount of variance in the data described by the factor.
- Rules to go by:
  - number of eigenvalues > 1
  - scree plot
  - % variance explained
  - comprehensibility

# Frailty Example

|           | (principal con | nponents; 13 com | mponents retai | ned)       |
|-----------|----------------|------------------|----------------|------------|
| Component | Eigenvalue     | Difference       | Proportion     | Cumulative |
|           |                |                  |                |            |
| 1         | 3.80792        | 1.28489          | 0.2929         | 0.2929     |
| 2         | 2.52303        | 1.28633          | 0.1941         | 0.4870     |
| 3         | 1.23669        | 0.10300          | 0.0951         | 0.5821     |
| 4         | 1.13370        | 0.19964          | 0.0872         | 0.6693     |
| 5         | 0.93406        | 0.15572          | 0.0719         | 0.7412     |
| б         | 0.77834        | 0.05959          | 0.0599         | 0.8011     |
| 7         | 0.71875        | 0.13765          | 0.0553         | 0.8563     |
| 8         | 0.58110        | 0.18244          | 0.0447         | 0.9010     |
| 9         | 0.39866        | 0.02716          | 0.0307         | 0.9317     |
| 10        | 0.37149        | 0.06131          | 0.0286         | 0.9603     |
| 11        | 0.31018        | 0.19962          | 0.0239         | 0.9841     |
| 12        | 0.11056        | 0.01504          | 0.0085         | 0.9927     |
| 13        | 0.09552        |                  | 0.0073         | 1.0000     |

#### Scree Plot for Frailty Example



#### First 6 factors in principal components

|          | Eigenvector | ſS       |          |          |          |          |
|----------|-------------|----------|----------|----------|----------|----------|
| Variable | 1           | 2        | 3        | 4        | 5        | 6        |
| arm_circ | 0.28486     | 0.44788  | -0.26770 | -0.00884 | 0.11395  | 0.06012  |
| skinfld  | 0.32495     | 0.31889  | -0.20402 | 0.19147  | 0.13642  | -0.03465 |
| fastwalk | 0.29734     | -0.39078 | -0.30053 | 0.05651  | 0.01173  | 0.26724  |
| gripstr  | 0.32295     | 0.08761  | 0.24818  | -0.37992 | -0.41679 | 0.05057  |
| pinchstr | 0.31598     | 0.12799  | 0.27284  | -0.29200 | -0.38819 | 0.27536  |
| upextstr | 0.25737     | -0.11702 | 0.17057  | -0.38920 | 0.37099  | -0.03115 |
| kneeext  | 0.32585     | -0.09121 | 0.30073  | 0.45229  | 0.00941  | -0.02102 |
| hipext   | 0.26007     | -0.01740 | 0.39827  | 0.52709  | -0.11473 | -0.20850 |
| shldrrot | 0.21372     | -0.14109 | 0.33434  | -0.16968 | 0.65061  | -0.01115 |
| pegbrd   | -0.22909    | 0.15047  | 0.22396  | 0.23034  | 0.11674  | 0.84094  |
| bmi      | 0.24306     | 0.47156  | -0.24395 | 0.04826  | 0.14009  | 0.02907  |
| uslwalk  | 0.27617     | -0.40093 | -0.32341 | 0.02945  | 0.01188  | 0.29727  |
| chrstand | -0.21713    | 0.27013  | 0.23698  | -0.10748 | 0.19050  | 0.06312  |

# At this stage....

- Don't worry about interpretation of factors!
- <u>Main concern</u>: whether a smaller number of factors can account for variability
- Researcher (i.e. YOU) needs to:
  - provide number of common factors to be extracted OR
  - provide objective criterion for choosing number of factors (e.g. scree plot, % variability, etc.)

# Rotation

- In principal components, the first factor describes most of variability.
- After choosing number of factors to retain, we want to <u>spread variability</u> more evenly among factors.
- To do this we "rotate" factors:
  - redefine factors such that loadings on various factors tend to be very high (-1 or 1) or very low (0)
  - intuitively, it makes sharper distinctions in the meanings of the factors
  - We use "factor analysis" for rotation NOT principal components!

### 5 Factors, Unrotated

|          | Factor Load | lings    |          |          |          |            |
|----------|-------------|----------|----------|----------|----------|------------|
| Variable | 1           | 2        | 3        | 4        | 5        | Uniqueness |
| +        |             |          |          |          |          |            |
| arm_circ | 0.59934     | 0.67427  | -0.26580 | -0.04146 | 0.02383  | 0.11321    |
| skinfld  | 0.62122     | 0.41768  | -0.13568 | 0.16493  | 0.01069  | 0.39391    |
| fastwalk | 0.57983     | -0.64697 | -0.30834 | -0.00134 | -0.05584 | 0.14705    |
| gripstr  | 0.57362     | 0.08508  | 0.31497  | -0.33229 | -0.13918 | 0.43473    |
| pinchstr | 0.55884     | 0.13477  | 0.30612  | -0.25698 | -0.15520 | 0.48570    |
| upextstr | 0.41860     | -0.15413 | 0.14411  | -0.17610 | 0.26851  | 0.67714    |
| kneeext  | 0.56905     | -0.14977 | 0.26877  | 0.36304  | -0.01108 | 0.44959    |
| hipext   | 0.44167     | -0.04549 | 0.31590  | 0.37823  | -0.07072 | 0.55500    |
| shldrrot | 0.34102     | -0.17981 | 0.19285  | -0.02008 | 0.31486  | 0.71464    |
| pegbrd   | -0.37068    | 0.19063  | 0.04339  | 0.12546  | -0.03857 | 0.80715    |
| bmi      | 0.51172     | 0.70802  | -0.24579 | 0.03593  | 0.04290  | 0.17330    |
| uslwalk  | 0.53682     | -0.65795 | -0.33565 | -0.03688 | -0.05196 | 0.16220    |
| chrstand | -0.35387    | 0.33874  | 0.07315  | -0.03452 | 0.03548  | 0.75223    |

### 5 Factors, Rotated

| (varimax ı | rotation)   |              |          |          |          |            |
|------------|-------------|--------------|----------|----------|----------|------------|
|            | Rotated Fac | ctor Loading | gs       |          |          |            |
| Variable   | 1           | 2            | 3        | 4        | 5        | Uniqueness |
|            | +           |              |          |          |          |            |
| arm_circ   | -0.00702    | 0.93063      | 0.14300  | 0.00212  | 0.01487  | 0.11321    |
| skinfld    | 0.11289     | 0.71998      | 0.09319  | 0.25655  | 0.02183  | 0.39391    |
| fastwalk   | 0.91214     | -0.01357     | 0.07068  | 0.11794  | 0.04312  | 0.14705    |
| gripstr    | 0.13683     | 0.24745      | 0.67895  | 0.13331  | 0.08110  | 0.43473    |
| pinchstr   | 0.09672     | 0.28091      | 0.62678  | 0.17672  | 0.04419  | 0.48570    |
| upextstr   | 0.25803     | 0.08340      | 0.28257  | 0.10024  | 0.39928  | 0.67714    |
| kneeext    | 0.27842     | 0.13825      | 0.16664  | 0.64575  | 0.09499  | 0.44959    |
| hipext     | 0.11823     | 0.11857      | 0.15140  | 0.62756  | 0.01438  | 0.55500    |
| shldrrot   | 0.20012     | 0.01241      | 0.16392  | 0.21342  | 0.41562  | 0.71464    |
| pegbrd     | -0.35849    | -0.09024     | -0.19444 | -0.03842 | -0.13004 | 0.80715    |
| bmi        | -0.09260    | 0.90163      | 0.06343  | 0.03358  | 0.00567  | 0.17330    |
| uslwalk    | 0.90977     | -0.03758     | 0.05757  | 0.06106  | 0.04081  | 0.16220    |
| chrstand   | -0.46335    | 0.01015      | -0.08856 | -0.15399 | -0.03762 | 0.75223    |

# 2 Factors, Unrotated

| Factor Loadings |          |          |            |  |  |
|-----------------|----------|----------|------------|--|--|
| Variable        | 1        | 2        | Uniqueness |  |  |
|                 | +        |          |            |  |  |
| arm_circ        | 0.62007  | 0.66839  | 0.16876    |  |  |
| skinfld         | 0.63571  | 0.40640  | 0.43071    |  |  |
| fastwalk        | 0.56131  | -0.64152 | 0.27339    |  |  |
| gripstr         | 0.55227  | 0.06116  | 0.69126    |  |  |
| pinchstr        | 0.54376  | 0.11056  | 0.69210    |  |  |
| upextstr        | 0.41508  | -0.16690 | 0.79985    |  |  |
| kneeext         | 0.55123  | -0.16068 | 0.67032    |  |  |
| hipext          | 0.42076  | -0.05615 | 0.81981    |  |  |
| shldrrot        | 0.33427  | -0.18772 | 0.85303    |  |  |
| pegbrd          | -0.37040 | 0.20234  | 0.82187    |  |  |
| bmi             | 0.52567  | 0.69239  | 0.24427    |  |  |
| uslwalk         | 0.51204  | -0.63845 | 0.33020    |  |  |
| chrstand        | -0.35278 | 0.35290  | 0.75101    |  |  |

# 2 Factors, Rotated

| (varimax rotation)<br>Rotated Factor Loadings |          |          |            |  |  |
|-----------------------------------------------|----------|----------|------------|--|--|
| Variable                                      | 1        | 2        | Uniqueness |  |  |
| arm_circ                                      | -0.04259 | 0.91073  | 0.16876    |  |  |
| skinfld                                       | 0.15533  | 0.73835  | 0.43071    |  |  |
| fastwalk                                      | 0.85101  | -0.04885 | 0.27339    |  |  |
| gripstr                                       | 0.34324  | 0.43695  | 0.69126    |  |  |
| pinchstr                                      | 0.30203  | 0.46549  | 0.69210    |  |  |
| upextstr                                      | 0.40988  | 0.17929  | 0.79985    |  |  |
| kneeext                                       | 0.50082  | 0.28081  | 0.67032    |  |  |
| hipext                                        | 0.33483  | 0.26093  | 0.81981    |  |  |
| shldrrot                                      | 0.36813  | 0.10703  | 0.85303    |  |  |
| pegbrd                                        | -0.40387 | -0.12258 | 0.82187    |  |  |
| bmi                                           | -0.12585 | 0.86017  | 0.24427    |  |  |
| uslwalk                                       | 0.81431  | -0.08185 | 0.33020    |  |  |
| chrstand                                      | -0.49897 | -0.00453 | 0.75101    |  |  |

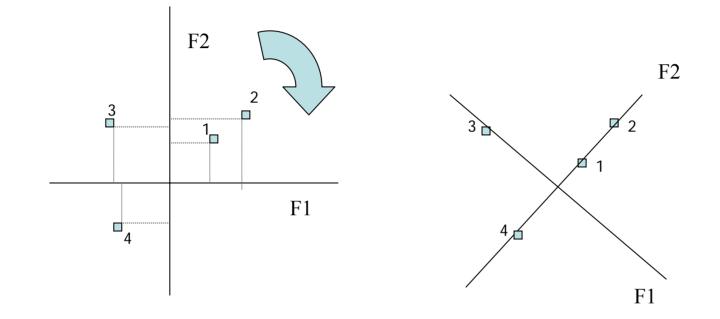
# **Unique Solution?**

- The factor analysis solution is NOT unique!
- More than one solution will yield the same "result."
- We will understand this better by the end of the lecture.....

# Rotation (continued)

- Uses "ambiguity" or non-uniqueness of solution to make interpretation more simple
- Where does ambiguity come in?
  - Unrotated solution is based on the idea that each factor tries to maximize variance explained, conditional on previous factors
  - What if we take that away?
  - Then, there is not one "best" solution.
- All solutions are <u>relatively</u> the same.
- Goal is simple structure
- Most construct validation assumes simple (typically rotated) structure.
- Rotation does NOT improve fit!

# Rotating Factors (Intuitively)



|    | Factor 1 | Factor 2 |    | Factor 1 | Factor 2 |
|----|----------|----------|----|----------|----------|
| x1 | 0.5      | 0.5      | x1 |          | 0.6      |
| x2 | 0.8      | 0.8      | x2 | 0        | 0.9      |
| х3 | -0.7     | 0.7      | x3 | -0.9     | 0        |
| x4 | -0.5     | -0.5     | x4 | 0        | -0.9     |

#### Orthogonal vs. Oblique Rotation

- Orthogonal: Factors are independent
  - <u>varimax</u>: maximize squared loading variance across variables (sum over factors)
  - <u>quartimax</u>: maximize squared loading variance across factors (sum over variables)
  - Intuition: from previous picture, there is a right angle between axes
- Note: "Uniquenesses" remain the same!

# Orthogonal vs. Oblique Rotation

- Oblique: Factors **not** independent. Change in "angle."
  - <u>oblimin</u>: minimize squared loading covariance between factors.
  - <u>promax</u>: simplify orthogonal rotation by making small loadings even closer to zero.
  - <u>Target matrix</u>: choose "simple structure" a priori. (see Kim and Mueller)
  - Intuition: from previous picture, angle between axes is not necessarily a right angle.
- Note: "Uniquenesses" remain the same!

#### **Promax Rotation: 5 Factors**

| (promax rotation) |             |              |          |          |          |            |
|-------------------|-------------|--------------|----------|----------|----------|------------|
|                   | Rotated Fac | ctor Loading | gs       |          |          |            |
| Variable          | 1           | 2            | 3        | 4        | 5        | Uniqueness |
| +                 | +           |              |          |          |          |            |
| arm_circ          | 0.01528     | 0.94103      | 0.05905  | -0.09177 | -0.00256 | 0.11321    |
| skinfld           | 0.06938     | 0.69169      | -0.03647 | 0.22035  | -0.00552 | 0.39391    |
| fastwalk          | 0.93445     | -0.00370     | -0.02397 | 0.02170  | -0.02240 | 0.14705    |
| gripstr           | -0.01683    | 0.00876      | 0.74753  | -0.00365 | 0.01291  | 0.43473    |
| pinchstr          | -0.04492    | 0.04831      | 0.69161  | 0.06697  | -0.03207 | 0.48570    |
| upextstr          | 0.02421     | 0.02409      | 0.10835  | -0.05299 | 0.50653  | 0.67714    |
| kneeext           | 0.06454     | -0.01491     | 0.00733  | 0.67987  | 0.06323  | 0.44959    |
| hipext            | -0.06597    | -0.04487     | 0.04645  | 0.69804  | -0.03602 | 0.55500    |
| shldrrot          | -0.06370    | -0.03314     | -0.05589 | 0.10885  | 0.54427  | 0.71464    |
| pegbrd            | -0.29465    | -0.05360     | -0.13357 | 0.06129  | -0.13064 | 0.80715    |
| bmi               | -0.07198    | 0.92642      | -0.03169 | -0.02784 | -0.00042 | 0.17330    |
| uslwalk           | 0.94920     | -0.01360     | -0.02596 | -0.04136 | -0.02118 | 0.16220    |
| chrstand          | -0.43302    | 0.04150      | -0.02964 | -0.11109 | -0.00024 | 0.75223    |

# **Promax Rotation: 2 Factors**

| (promax rotation) |             |             |            |  |  |
|-------------------|-------------|-------------|------------|--|--|
|                   | Rotated Fac | ctor Loadir | ngs        |  |  |
| Variable          | 1           | 2           | Uniqueness |  |  |
| +                 |             |             |            |  |  |
| arm_circ          | -0.21249    | 0.96331     | 0.16876    |  |  |
| skinfld           | 0.02708     | 0.74470     | 0.43071    |  |  |
| fastwalk          | 0.90259     | -0.21386    | 0.27339    |  |  |
| gripstr           | 0.27992     | 0.39268     | 0.69126    |  |  |
| pinchstr          | 0.23139     | 0.43048     | 0.69210    |  |  |
| upextstr          | 0.39736     | 0.10971     | 0.79985    |  |  |
| kneeext           | 0.47415     | 0.19880     | 0.67032    |  |  |
| hipext            | 0.30351     | 0.20967     | 0.81981    |  |  |
| shldrrot          | 0.36683     | 0.04190     | 0.85303    |  |  |
| pegbrd            | -0.40149    | -0.05138    | 0.82187    |  |  |
| bmi               | -0.29060    | 0.92620     | 0.24427    |  |  |
| uslwalk           | 0.87013     | -0.24147    | 0.33020    |  |  |
| chrstand          | -0.52310    | 0.09060     | 0.75101    |  |  |

•

#### Which to use?

- Choice is generally not critical
- Interpretation with orthogonal is "simple" because factors are independent: Loadings are correlations.
- Structure may appear more simple in oblique, but correlation of factors can be difficult to reconcile (deal with interactions, etc.)
- Theory? Are the conceptual meanings of the factors associated?
- <u>Oblique</u>:
  - Loading is no longer interpretable as covariance or correlation between object and factor
  - 2 matrices: pattern matrix (loadings) and structure matrix (correlations)
- Stata: varimax, promax

# Steps in Exploratory Factor Analysis

- (1) Collect data: choose relevant variables.
- (2) Extract initial factors (via principal components)
- (3) Choose number of factors to retain
- (4) Choose estimation method, estimate model
- (5) Rotate and interpret
- (6) (a) Decide if changes need to be made (e.g. drop item(s), include item(s))

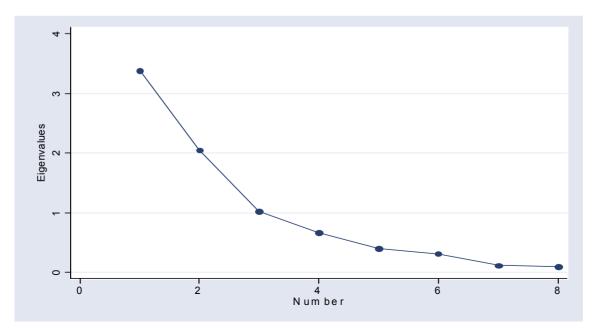
(b) repeat (4)-(5)

(7) Construct scales and use in further analysis

#### Drop variables with Uniqueness>0.50 in 5 factor model

. pca arm\_circ skinfld fastwalk gripstr pinchstr kneeext bmi uslwalk (obs=782)

| (principal components; 8 components retained) |            |            |            |            |  |
|-----------------------------------------------|------------|------------|------------|------------|--|
| Component                                     | Eigenvalue | Difference | Proportion | Cumulative |  |
|                                               |            |            |            |            |  |
| 1                                             | 3.37554    | 1.32772    | 0.4219     | 0.4219     |  |
| 2                                             | 2.04782    | 1.03338    | 0.2560     | 0.6779     |  |
| 3                                             | 1.01444    | 0.35212    | 0.1268     | 0.8047     |  |
| 4                                             | 0.66232    | 0.26131    | 0.0828     | 0.8875     |  |
| 5                                             | 0.40101    | 0.09655    | 0.0501     | 0.9376     |  |
| б                                             | 0.30446    | 0.19361    | 0.0381     | 0.9757     |  |
| 7                                             | 0.11085    | 0.02726    | 0.0139     | 0.9896     |  |
| 8                                             | 0.08358    |            | 0.0104     | 1.0000     |  |



# 3 Factor, Varimax Rotated

| ( v      | varimax rotat | ion)         |                       |            |
|----------|---------------|--------------|-----------------------|------------|
|          | Rotated Fac   | tor Loadings | 3                     |            |
| Variable | weight        | Leg agility. | hand str <sup>t</sup> | Jniqueness |
| arm_circ | 0.93225       | 0.00911      | -0.19238              | 0.09381    |
| skinfld  | 0.84253       | 0.17583      | -0.17748              | 0.22773    |
| fastwalk | 0.01214       | 0.95616      | -0.11423              | 0.07256    |
| gripstr  | 0.19156       | 0.13194      | -0.86476              | 0.19809    |
| pinchstr | 0.20674       | 0.13761      | -0.85214              | 0.21218    |
| kneeext  | 0.22656       | 0.52045      | -0.36434              | 0.54505    |
| bmi      | 0.92530       | -0.07678     | -0.11021              | 0.12579    |
| uslwalk  | -0.00155      | 0.95111      | -0.09161              | 0.08700    |

# 2 Factor, Varimax Rotated

| (varimax rotation) |             |            |            |  |  |
|--------------------|-------------|------------|------------|--|--|
|                    | Rotated Fac | tor Loadir | ngs        |  |  |
| Variable           | weight      | speed      | Uniqueness |  |  |
|                    | +           |            |            |  |  |
| arm_circ           | 0.94411     | 0.01522    | 0.10843    |  |  |
| skinfld            | 0.76461     | 0.16695    | 0.38751    |  |  |
| fastwalk           | 0.01257     | 0.94691    | 0.10320    |  |  |
| gripstr            | 0.43430     | 0.33299    | 0.70050    |  |  |
| pinchstr           | 0.44095     | 0.33515    | 0.69324    |  |  |
| kneeext            | 0.29158     | 0.45803    | 0.70519    |  |  |
| bmi                | 0.85920     | -0.07678   | 0.25589    |  |  |
| uslwalk            | -0.00163    | 0.89829    | 0.19308    |  |  |